The correct option is A 9
From the given network, we can extract some equations which are,
I1=15A ..........equation (i)
I3−I1=Vx9 ...........equation (ii)
−6I2+3I3+2I1=0 .............equation (iii)
and
Vx=3(I3−I2) .............equation (iv)
Applying KCL at node A,
I3=15+Vx9
⇒I3=15+3(I3−I2)9 from equation (iv)
⇒I3=15+I3−I23
⇒I3−I33=15−I23
⇒2I33=45−I23
⇒I2=45−2I3 .............equation (v)
Put the value of I2 in equation (iii)
−6I2+3I3+2I1=0
⇒−6(45−2I3)+3I3+2×15=0
⇒−270+12I3+3I3+30=0
⇒15I3=240
I3=16A
and
I2=45−2 I3
I2=45−2×16
I2=13 A
From equation (iv)
Vx=3(I3−I2)
=3(16−13)
=9 V