The correct option is C x=−14
log(2x+3)(6x2+23x+21)=4−log(3x+7)(4x2+12x+9)⇒log(2x+3)[(2x+3)(3x+7)]=4−log(3x+7)(2x+3)2⇒1+log(2x+3)(3x+7)=4−2log(3x+7)(2x+3)[∵log(ab)=loga+logb&logaa=1]
Put log(2x+3)(3x+7)=y
∴y+2y−3=0⇒y2−3y+2=0⇒(y−1)(y−2)=0
⇒y=1 or y=2
⇒log(2x+3)(3x+7)=1 or log(2x+3)(3x+7)=2
⇒3x+7=2x+3 or (3x+7)=(2x+3)2
⇒x=−4 or 3x+7=4x2+12x+9
⇒x=−4 or 4x2+9x+2=0
⇒x=−4 or (4x+1)(x+2)=0
∴x=−2,−4,−14 ...(1)
But, log exists only when 6x2+23x+21>0,4x2+12x+9>0
2x+3>0 and 3x+7>0
⇒x>−32 ...(2)
From (1) and (2)
∴x=−14