The correct option is
A a=−5,b=−1The given system of equations can be written as
2x−3y=7
⇒ 2x−3y−7=0 ----- ( 1 )
and (a+b)x−(a+b−3)y=4a+b
⇒ (a+b)x−(a+b−3)y−(4a+b)=0 ------ ( 2 )
Comparing given equations with following forms,
a1x+b1y+c1=0 and a2x+b2y+c2=0
So we get, a1=2,b1=−3,c1=−7 and a2=(a+b),b2=−(a+b−3),,c2=−(4a+b)
⇒ a1a2=b1b2=c1c2
⇒ 2a+b=−3−(a+b−3)=−7−(4a+b)
⇒ 2a+b=3(a+b−3)=7(4a+b)
⇒ 2a+b=7(4a+b) and 3(a+b−3)=7(4a+b)
⇒ 2(4a+b)=7(a+b) and 3(4a+b)=7(a+b−3)
⇒ 8a+2b=7a+7b and 12a+3b=7a+7b−21
∴ a=5b ---- ( 3 )
and 5a=4b−21 ----- ( 4 )
On substituting a=5b in ( 4 ), we get,
5(5b)=4b−21
⇒ 25b=4b−21
⇒ 21b=−21
∴ b=−1
On substituting b=−1 in ( 3 ), we get
a=5(−1)=−5
∴ a=−5 and b=−1