Find the values of c that satisfy the MVT for integrals on [2,5].
f(z)=4z3−8z2+7z−2
f(z)=4z3−8z2+7z−2
f′(c)=12c2−16c+7
f′(c)=f(5)−f(2)5−2
=4(53)−8(52)+7(5)−2−[4(23)−8(22)+7(2)−2]
=500−200+35−2−32+208−14+23
=4973
12c2−16c+7=4973
12c2−16c−4763=0
36c2−48c−476=0
c=48±√(48)2−4(−476)(36)72
c=48±√2304+6854472
c=48±24√7972
c=2±√793