Find the values of x in each of the following:
(i) log 144log 12=log x
(ii) log 125log 25=x
(iii) logx4+logx16+logx64=12
(i) We have,
log 144log 12=log x
⇒log 122log 12=log x
⇒2log 12log 12=log x
⇒log x=2
⇒log10x=2 [∵log x=log10x]
⇒x=102=100
(ii) We have
log 125log 25=x
⇒log 53log 52=x
⇒3log 52log 5=x
⇒32=x
(iii) We have,
logx4+logx16+logx64=12
⇒logx22+logx24+logx26=12
⇒2logx2+4logx2+6logx2=12
⇒12logx2=12
⇒logx2=1
⇒x1=2
⇒x=2