Find the values of x, which satisfy the inequation:
2≤ 12−2x3≤ 116 , x ϵ N.
3
We have,
−2 ≤ (12) − (2x3) ≤ (116)
−2 ≤ (12) − (2x3) ≤ (116)
−12 ≤ 3−4x ≤ 11
⇒ −12 −3 ≤ 3 − 4x − 3 ≤ 11 − 3
−15 ≤ −4x ≤ 8
15 ≥ 4x ≥ −8
−8 ≤ 4x ≤ 15
−2 ≤ x ≤ (154)
−2 ≤ x ≤ 3(34)
But, x ϵ N , i.e x ϵ {1,2,3,4,….}
So, the solution set is {1,2,3}.