¯¯¯a=4ˆi−3ˆj−ˆk¯¯b=3ˆi+7ˆj−10ˆk
¯¯c=2ˆi+5ˆj−7ˆk
=(1−s−t)¯¯¯a+s¯¯b+t¯¯c s and t is scalar
¯¯¯r=(1−s−t)(4ˆi−3ˆj−ˆk)+s(3ˆi+tˆj−10ˆk)+t(2i+5j−tk)
¯¯¯r=4ˆi−3ˆj−ˆk+s(−ˆi+10ˆj−9ˆk)+t(−2ˆi+58−ˆ6k)
to find if point ˆi+2ˆj−3ˆk lies on the above plane
ˆi+2ˆj−3ˆk=s(−ˆi+10ˆj−9ˆk)+t(−2ˆi+58−ˆ6k)
−3ˆi+5ˆj−2ˆk=s(−ˆi+10ˆj−9ˆk)+t(−2ˆi+58−ˆ6k)
i , j ,k coefficient
-3 = -5 -2t is equation (1)
5 = 10s+8t is equation (2)
-2 = -9s -6t is equation (3)
solve equation (1) and (2)
s=−76t=146
RHS of equation (3)−9s−6t
=−9(−76)−6(146)63−846=−−216=−72−72≠−2
(ˆi+2ˆj−3ˆk) does not lie on above plane.