1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Vector Triple Product
Find the vect...
Question
Find the vector equations of the following planes in scalar product form
r
→
·
n
→
=
d
:
(i)
r
→
=
2
i
^
-
k
^
+
λ
i
^
+
μ
i
^
-
2
j
^
-
k
^
(ii)
r
→
=
1
+
s
-
t
t
^
+
2
-
s
j
^
+
3
-
2
s
+
2
t
k
^
(iii)
r
→
=
i
^
+
j
^
+
λ
i
^
+
2
j
^
-
k
^
+
μ
-
i
^
+
j
^
-
2
k
^
(iv)
r
→
=
i
^
-
j
^
+
λ
i
^
+
j
^
+
k
^
+
μ
4
i
^
-
2
j
^
+
3
k
^
Open in App
Solution
i
We know that the equation
r
→
=
a
→
+
λ
b
→
+
μ
c
→
represents a plane passing through a point whose position vector is
a
→
and parallel to the vectors
b
→
and
c
→
.
Here,
a
→
=
2
i
^
+
0
j
^
-
k
^
;
b
→
=
i
^
;
c
→
=
i
^
-
2
j
^
-
k
^
Normal vector,
n
→
=
b
→
×
c
→
=
i
^
j
^
k
^
1
0
0
1
-
2
-
1
=
0
i
^
+
j
^
-
2
k
^
=
j
^
-
2
k
^
The vector equation of the plane in scalar product form is
r
→
.
n
→
=
a
→
.
n
→
⇒
r
→
.
j
^
-
2
k
^
=
2
i
^
+
0
j
^
-
k
^
.
j
^
-
2
k
^
⇒
r
→
.
j
^
-
2
k
^
=
2
i
i
The given equation of the plane is
r
→
=
1
+
s
-
t
i
^
+
2
-
s
j
^
+
3
-
2
s
+
2
t
k
^
⇒
r
→
=
i
^
+
2
j
^
+
3
k
^
+
s
i
^
-
j
-
2
k
^
+
t
-
i
^
+
0
j
^
+
2
k
^
We know that the equation
r
→
=
a
→
+
s
b
→
+
t
c
→
represents a plane passing through a point whose position vector is
a
→
and parallel to the vectors
b
→
and
c
→
.
Here,
a
→
=
i
^
+
2
j
^
+
3
k
^
;
b
→
=
i
^
-
j
-
2
k
^
;
c
→
=
-
i
^
+
0
j
^
+
2
k
^
Normal vector,
n
→
=
b
→
×
c
→
=
i
^
j
^
k
^
1
-
1
-
2
-
1
0
2
=
-
2
i
^
+
0
j
^
-
k
^
=
-
2
i
^
-
k
^
The vector equation of the plane in scalar product form is
r
→
.
n
→
=
a
→
.
n
→
⇒
r
→
.
-
2
i
^
-
k
^
=
i
^
+
2
j
^
+
3
k
^
.
-
2
i
^
-
k
^
⇒
r
→
.
-
1
2
i
^
+
k
^
=
-
2
+
0
-
3
⇒
r
→
.
-
1
2
i
^
+
k
^
=
-
5
⇒
r
→
.
2
i
^
+
k
^
=
5
i
i
i
We know that the equation
r
→
=
a
→
+
λ
b
→
+
μ
c
→
represents a plane passing through a point whose position vector is
a
→
and parallel to the vectors
b
→
and
c
→
.
Here,
a
→
=
i
^
+
j
^
+
0
k
^
;
b
→
=
i
^
+
2
j
^
-
k
^
;
c
→
=
-
i
^
+
j
^
-
2
k
^
Normal vector,
n
→
=
b
→
×
c
→
=
i
^
j
^
k
^
1
2
-
1
-
1
1
-
2
=
-
3
i
^
+
3
j
^
+
3
k
^
The vector equation of the plane in scalar product form is
r
→
.
n
→
=
a
→
.
n
→
⇒
r
→
.
-
3
i
^
+
3
j
^
+
3
k
^
=
i
^
+
j
^
+
0
k
^
.
-
3
i
^
+
3
j
^
+
3
k
^
⇒
r
→
.
-
3
i
^
+
3
j
^
+
3
k
^
=
-
3
+
3
⇒
r
→
.
3
-
i
^
+
j
^
+
k
^
=
0
⇒
r
→
.
-
i
^
+
j
^
+
k
^
=
0
i
v
We know that the equation
r
→
=
a
→
+
λ
b
→
+
μ
c
→
represents a plane passing through a point whose position vector is
a
→
and parallel to the vectors
b
→
and
c
→
.
Here,
a
→
=
i
^
-
j
^
+
0
k
^
;
b
→
=
i
^
+
j
^
+
k
^
;
c
→
=
4
i
⏜
-
2
j
^
+
3
k
^
Normal vector,
n
→
=
b
→
×
c
→
=
i
^
j
^
k
^
1
1
1
4
-
2
3
=
5
i
^
+
j
^
-
6
k
^
The vector equation of the plane in scalar product form is
r
→
.
n
→
=
a
→
.
n
→
⇒
r
→
.
5
i
^
+
j
^
-
6
k
^
=
i
^
-
j
^
+
0
k
^
.
5
i
^
+
j
^
-
6
k
^
⇒
r
→
.
5
i
^
+
j
^
-
6
k
^
=
5
-
1
+
0
⇒
r
→
.
5
i
^
+
j
^
-
6
k
^
=
4
⇒
r
→
.
5
i
^
+
j
^
-
6
k
^
=
4
Disclaimer: The answer given for part (iv) of this problem in the text book is incorrect.
Suggest Corrections
0
Similar questions
Q.
Find the shortest distance between the following pairs of parallel lines whose equations are:
(i)
r
→
=
i
^
+
2
j
^
+
3
k
^
+
λ
i
^
-
j
^
+
k
^
and
r
→
=
2
i
^
-
j
^
-
k
^
+
μ
-
i
^
+
j
^
-
k
^
(ii)
r
→
=
i
^
+
j
^
+
λ
2
i
^
-
j
^
+
k
^
and
r
→
=
2
i
^
+
j
^
-
k
^
+
μ
4
i
^
-
2
j
^
+
2
k
^
Q.
Find the shortest distance between the following pairs of lines whose vector equations are:
(i)
r
→
=
3
i
^
+
8
j
^
+
3
k
^
+
λ
3
i
^
-
j
^
+
k
^
and
r
→
=
-
3
i
^
-
7
j
^
+
6
k
^
+
μ
-
3
i
^
+
2
j
^
+
4
k
^
(ii)
r
→
=
3
i
^
+
5
j
^
+
7
k
^
+
λ
i
^
-
2
j
^
+
7
k
^
and
r
→
=
-
i
^
-
j
^
-
k
^
+
μ
7
i
^
-
6
j
^
+
k
^
(iii)
r
→
=
i
^
+
2
j
^
+
3
k
^
+
λ
2
i
^
+
3
j
^
+
4
k
^
and
r
→
=
2
i
^
+
4
j
^
+
5
k
^
+
μ
3
i
^
+
4
j
^
+
5
k
^
(iv)
r
→
=
1
-
t
i
^
+
t
-
2
j
^
+
3
-
t
k
^
and
r
→
=
s
+
1
i
^
+
2
s
-
1
j
^
-
2
s
+
1
k
^
(v)
r
→
=
λ
-
1
i
^
+
λ
+
1
j
^
-
1
+
λ
k
^
and
r
→
=
1
-
μ
i
^
+
2
μ
-
1
j
^
+
μ
+
2
k
^
(vi)
r
→
=
2
i
^
-
j
^
-
k
^
+
λ
2
i
^
-
5
j
^
+
2
k
^
and
,
r
→
=
i
^
+
2
j
^
+
k
^
+
μ
i
^
-
j
^
+
k
^
(vii)
r
→
=
i
^
+
j
^
+
λ
2
i
^
-
j
^
+
k
^
and
,
r
→
=
2
i
^
+
j
^
-
k
^
+
μ
3
i
^
-
5
j
^
+
2
k
^
(viii)
r
→
=
8
+
3
λ
i
^
-
9
+
16
λ
j
^
+
10
+
7
λ
k
^
and
r
→
=
15
i
^
+
29
j
^
+
5
k
^
+
μ
3
i
^
+
8
j
^
-
5
k
^
[NCERT EXEMPLAR]
Q.
The equation of the plane
r
→
=
i
^
-
j
^
+
λ
i
^
+
j
^
+
k
^
+
μ
i
^
-
2
j
^
+
3
k
^
in scalar product form is
(a)
r
→
·
5
i
^
-
2
j
^
-
3
k
^
=
7
(b)
r
→
·
5
i
^
+
2
j
^
-
3
k
^
=
7
(c)
r
→
·
5
i
^
-
2
j
^
+
3
k
^
=
7
(d) None of these
Q.
Find the shortest distance between the lines
(i)
r
→
=
i
^
+
2
j
^
+
k
^
+
λ
i
^
-
j
^
+
k
^
and
,
r
→
=
2
i
^
-
j
^
-
k
^
+
μ
2
i
^
+
j
^
+
2
k
^
(ii)
x
+
1
7
=
y
+
1
-
6
=
z
+
1
1
and
x
-
3
1
=
y
-
5
-
2
=
z
-
7
1
(iii)
r
→
=
i
^
+
2
j
^
+
3
k
^
+
λ
i
^
-
3
j
^
+
2
k
^
and
r
→
=
4
i
^
+
5
j
^
+
6
k
^
+
μ
2
i
^
+
3
j
^
+
k
^
(iv)
r
→
=
6
i
^
+
2
j
^
+
2
k
^
+
λ
i
^
-
2
j
^
+
2
k
^
and
r
→
=
-
4
i
^
-
k
^
+
μ
3
i
^
-
2
j
^
-
2
k
^
Q.
Find the value of λ so that the following vectors are coplanar:
(i)
a
→
=
i
^
-
j
^
+
k
^
,
b
→
=
2
i
^
+
j
^
-
k
^
,
c
→
=
λ
i
^
-
j
^
+
λ
k
^
(ii)
a
→
=
2
i
^
-
j
^
+
k
^
,
b
→
=
i
^
+
2
j
^
-
3
k
^
,
c
→
=
λ
i
^
+
λ
j
^
+
5
k
^
(iii)
a
→
=
i
^
+
2
j
^
-
3
k
^
,
b
→
=
3
i
^
+
λ
j
^
+
k
^
,
c
→
=
i
^
+
2
j
^
+
2
k
^
(iv)
a
→
=
i
^
+
3
j
^
,
b
→
=
5
k
^
,
c
→
=
λ
i
^
-
j
^
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Vector Triple Product
MATHEMATICS
Watch in App
Explore more
Vector Triple Product
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app