Find
limx→1 f(x) where f(x)= {x2−1,x≤1−x2−1x>1
Here f(x) = {x2−1,x≤1−x2−1,x>1
L.H.L. = limx→1−f(x)=limx→1−(x2−1)
Put x=1 - h as x→1,h→0
∴limh→0[(1+h)2−1]=limh→0[1+h2−2h−1]
= (0)2−2×0=0
R.H.L. = limx→1+f(x)=limx→1+(−x2−1)
Put x=1 - h as x →1,h→0
∴limh→0[−(1+h)2−1]=limh→0[1−h2−2h−1]
=- (0)2−2×0−2=−2
∴ L.H.L. ≠ R.H.L.
This limit does not exist at x = 1.