Given
1+122+2233+3344+4455+...Let an= general term of series
an=1+nn(n+1)n+1an+1=1+(n+1)n+1(n+2)n+2
Applying ratio test
limn→∞an+1an=limn→∞[(n+2)n+2+(n+1)n+1(n+2)n+2(n+1)n+1(n+1)n+1+nn]=limn→∞(n)n+2(1+2/n)n+2+(n)n+1(1+1/n)n+1(n)n+2(1+2/n)n+2×(n)n+1(1+1/n)n+1(n)n+1(1+1/n)n+1+nn=limn→∞[nn+2nn+2(1+2/n)n+2+nn+1nn+2(1+1/n)n+1]nn+1nn+1(1+1/n)n+1(1+2/n)n+2((1+1/n)n+1+nnnn+1)=limn→∞[(1+2/n)n+2+1n(1+1/n)n+1](1+1/n)n+1(1+2/n)n+2((1+1/n)n+1+1n)
=limn→∞⎛⎝e2n(n+2)+0⎞⎠e1n(n+1)e2n(n+2)e1n(n+1)=1 (inconclusive)
Series may be convergent or divergent
Ratio test fails
Now applying Raabel's test
=limn→∞n(anan+1−1)=R=limn→∞n[(n+1)n+1+nn(n+1)n+1×(n+2)n+2(n+2)n+2+(n+1)n+1−1]=limn→∞n⎡⎢⎣nn(n+2)n+2−(n+1)2n+2(n+1)n+1((n+2)n+2+(n+1)n+1)⎤⎥⎦=limn→∞n⎡⎢
⎢
⎢
⎢⎣nn(n+2)n+2(1+2n)n+2+n2n+2(1+1n)2n+2nn+1(1+1n)n+1nn+2(1+2n)n+2+nn+1(1+1n)n+1⎤⎥
⎥
⎥
⎥⎦=limn→∞n⎡⎢
⎢
⎢
⎢
⎢
⎢⎣n2n+2n2n+2⋅n(1+2n)n+2+(1+1n)2n+2(1+1n)n+1[(1+2n)n+2+(1+1n)n+1]⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
=e2+e2e(e2)=2e2e3=2e<1 Divergent