The correct option is C (32,−2)
Let 1x−1=a and 1y+1=b
⇒ a + 4b = -2 ... (1)
3a - b = 7 ...... (2)
Multiplying equation (2) by 4, we get
12a - 4b = 28 .... (3)
Adding equation (1) and equation (3)
⇒ 13a = 26
a = 2
Solving for b, we get,
b = −1
∴1x−1=2 ⇒ x−1=12
⇒x=32
1y+1=−1⇒y+1=−1
⇒y=−2