The correct options are
A a−4/3
D a−1/2
Clearly, ax>0,x>0,a2x>0
and ax≠1,x≠1,a2x≠1
⇒x>0 and x≠1a,1,1a2
Now, logaxa+logxa2+loga2xa3=0
⇒1logaax+2logax+3logaa2x=0
⇒11+logax+2logax+32+logax=0
Let y=logax
Then 1y+1+2y+3y+2=0, y≠−2,−1,0
⇒y(y+2)+2(y+1)(y+2)+3y(y+1)y(y+1)(y+2)=0
⇒6y2+11y+4y(y+1)(y+2)=0
⇒6y2+11y+4=0⇒(2y+1)(3y+4)=0⇒y=−12,−43
⇒logax=−12,−43
∴x=a−1/2,a−4/3