Integration to Solve Modified Sum of Binomial Coefficients
For a∈ℝ the s...
Question
For a∈R (the set of all real numbers), a≠−1,limn→∞(1a+2a+⋯+na)(n+1)a−1[(na+1)+(na+2)+⋯+(na+n)]=160.
Then a=
A
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
7
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
−152
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−172
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D−172 ⇒limn→∞(1a+2a+...+na)(n+1)a−1[(na+1)+(na+2)+...+(na+n)]=160⇒limn→∞n∑n=1(r)a(n+1)a−1[n∑n=1(na+r)]=160⇒limn→∞nan∑n=1(rn)an(n+1)a−1[n∑n=1(a+rn)]=160⇒limn→∞n∑n=1(rn)a(1+1n)a−1[n∑n=1(a+rn)]=160⇒1∫0xadx1∫0(a+x)dx=160⇒[xa+1]10(a+1)[(ax+x22)10]=160⇒1a+1⎡⎢
⎢
⎢⎣1−0a+12⎤⎥
⎥
⎥⎦=160⇒2(2a+1)(a+1)=160