For a ∈R (the set of all real numbers), a≠−1,limn→∞(1a+2a+…+na)(n+1)a−1[(na+1)+(na+2)+…+(na+n)]=160. Then a=
Denominator :
(n+1)a−1[(na+1)+(na+2)++(na+n)]
= (n+1)a−1[(n2a+n(n+1)/2]
= { (n+1)a−1{(2a+1)n2+ n}}/2
Numerator :
limn→∞(1a+2a+3a+−−−−−+na) =limn→∞∫n0xadx
= 1a+1limn→∞na+1
Now as a whole :
L=limn→∞(1a+2a+…+na)(n+1)a−1[(na+1)+(na+2)+…+(na+n)]
=2a+1limn→∞na+1(n+1)a−1[(2a+1)n2+n]
Dividing Numerator and Denominator by(n+1)a+1, we get
L=2a+1limn→∞(nn+1)a+1(2a+1)(nn+1)2+n(n+1)2
As limn→∞(nn+1)r=limn→∞(11+1n)r=1 and limn→∞n(n+1)r=0ifr>1
We get,
2(a+1)(2a+1)=160
∴(a+1)(2a+1)=120
By solving the above quadratic equation we get two values of a
a=7 or (−17/2)
For a<0 numerator diverges
∴a=7