For a triangle ABC, which of the following is true?
A
cosAa=cosBb=cosCc
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cosAa+cosBb+cosCc=a2+b2+c22abc
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
sinAa+sinBb+sinCc=32R
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sin2Aa2=sin2Bb2=sin2Cc2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are AcosAa+cosBb+cosCc=a2+b2+c22abc CsinAa+sinBb+sinCc=32R Option(a) cosAa=cosBb=cosCc ⇒b2+c2−a22bca=c2+a2−b22cab=a2+b2−c22abc ⇒b2+c2−a22abc=c2+a2−b22abc=a2+b2−c22abc ⇒b2+c2−a2=c2+a2−b2=a2+b2−c2 ∴ It is possible when a,b,c are all zero, which is impossible (since sides≠0) Option(b) cosAa+cosBb+cosCc =b2+c2−a22bca+c2+a2−b22cab+a2+b2−c22abc =b2+c2−a22abc+c2+a2−b22abc+a2+b2−c22abc =a2+b2+c22abc Option(c) sinAa+sinBb+sinCc=12R+12R+12R=32R
Option(d)
∵sin2Aa2=2sinAcosA4R2sin2A =cosA2R2sinA
=cotA2R2 Similarly, we have sin2Bb2=cotB2R2 and sin2Cc2=cotC2R2 Hence cotA2R2=cotB2R2=cotC2R2 ⇒cotA=cotB=cotC is possible when A=B=C. which is always not true.