For all complex numbers z1,z2 satisfying |z1|=12 and |z2−3−4i|=5 respectively, the minimum values of |z1−z2| is
Open in App
Solution
We have, |z1|=12 and |z2−(3+4i)|=5 ⇒||z2|−5|≤5≤|z2|+5 ⇒−5≤|z2|−5≤5and|z2|≥0 ⇒0≤|z2|≤10and|z2|≥0 ∴|z2|∈[0,10]
Now, ||z1|−|z2||≤|z1−z2| ∴|z1|−|z2|∈[2,12] ⇒ The minimum value of |z1−z2| is 2 which occurs when |z2|=10
Alternate Solution:
(0,0) lies on |z2−3−4i|=5. Clearly, from the diagram, we can conclude that the minimum value of |z1−z2| occurs at the common diameter. Hence, the minimum value of |z1−z2| is 12−10=2