For any integer n, arg(3+i)4n+1(1-i3)4n equals
π3
π6
2π3
5π6
Explanation for the correct option:
Find the value of given expression:
Given that, z=3+i4n+11-i34n
Multiply and divide numerator and denominator by 2
=232+i24n+1212-i324n=24n+1cosπ6+isinπ624ncosπ3-isinπ3=2eiπ64n+1e-iπ34n=2ei(4n+1)π6e-i4nπ3=2ei(12n+1)π6=2e2niπeiπ6=2eiπ6
∴argz=π6
Hence, Option ‘B’ is Correct.
If n is any positive integer, write the value of i4n+1−i4n−12