wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

For any positive integer n, prove that n3 – n is divisible by 6.

Open in App
Solution

Euclid's division lemma states that for given positive integers a and b, there exists unique integers q and r satisfying a=bq+r, 0r<b
Applying Euclid's division lemma om n and 6, we have
n=6q+r, 0r<6
Therefore, n can have six values, i.e.
n=6qn=6q+1n=6q+2n=6q+3n=6q+4n=6q+5
Case I: When n=6q
n3=(6q)3n3-n=(6q)3-6q=6q(36q2-1)=6m where m=q(36q2-1)
Hence, n=6q, n3-n is divisible by 6

Case II:
When n=6q+1
n3=(6q+1)3n3-n=(6q+1)3-(6q+1)=(6q+1)(6q+1)2-1=(6q+1)36q2+1+12q-1=(6q+1)36q2+12q=216q3+72q2+36q2+12q=636q3+18q2+2q=6m (where m=36q2+18q+2q)Hence, n=6q+1, n3-n is divisible by 6

Case III: When n=6q+2
n3=(6q+2)3n3-n=(6q+2)3-(6q+2)=(6q+2)(6q+2)2-1=(6q+2)36q2+4+24q-1=(6q+2)36q2+24q+3=216q3+144q2+18q+72q2+48q+6=216q3+216q2+66q+6=636q3+36q2+11q+1=6m (where m=36q3+36q2+11q+1)Hence, n=6q+1, n3-n is divisible by 6

Case IV: When n=6q+3
n3=(6q+3)3n3-n=(6q+3)3-(6q+3)=(6q+3)(6q+3)2-1=(6q+3)36q2+9+36q-1=(6q+3)36q2+36q+8=216q3+216q2+48q+108q2+108q+24=216q3+324q2+156q+24=636q3+54q2+26q+4=6m
Hence, n=6q+3, n3-n is divisible by 6.

Case V: When n=6q+4
n3=(6q+4)3n3-n=(6q+4)3-(6q+4)=(6q+4)(6q+4)2-1=(6q+4)36q2+16+48q-1=(6q+4)36q2+48q+15=216q3+288q2+90q+144q2+192q+60=216q3+432q2+282q+60=636q3+72q2+47q+10=6m (where m=36q3+72q2+47q+10)
Hence, n=6q+4, n3-n is divisible by 6.

Case VI: When n=6q+5
n3=(6q+5)3n3-n=(6q+5)3-(6q+5)=(6q+5)(6q+5)2-1=(6q+5)36q2+25+60q-1=(6q+5)36q2+60q+24=216q3+360q2+144q+180q2+300q+120=216q3+540q2+444q+120=636q3+90q2+74q+120=6m (where m=36q3+90q2+74q+120)
Hence, n=6q+5, n3-n is divisible by 6.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon