Given,
B=3C
Taking sin on both sides, we have
sinB=sin3C
sinB=3sinC−4sin3 C
=sinC(3−4sin2C)
=sinC(4cos2C−1)
sinB=sinC(4cos2C−1)
sinBsinC=cos2C−1 ... (1)
Using sin formula, we have
sinBb=sinCc
sinBsinC=bc ...... (2)
From equation (1) and (2),
4cos2C−1=bc
4cos2C=bc+1
cosC=√b+c4c ...(3)
Now, in a tranagle taking A+B+C=180∘
90−A2=B+C2
cos(90−A2)=cos(B+C2)
sinA2=cos(B+C2)
Since, B=3C, we have
sinA2=cos3C+C2
sinA2=cos2C
sinA2=2cos2C−1 ...(4)
From equation (3) and (4)
sinA2=b+c2c−1
sinA2=b−c2c
Hence proved.