For any two sets of A and B, prove that :
(i) A′∪B=U⇒A⊂B
(ii) B′⊂A′⇒A⊂B
(i) We have B′⊂A′
To show : A⊂B
Let, xϵA
⇒x /ϵA′ [∵A∩A′=ϕ]
⇒x /ϵB′ [∵B′⊂A′]
⇒x /ϵB [∵B∩B′=ϕ]
Thus, x ϵ A⇒x ϵ B
This is true for all x ϵ A
∴A⊂B
(ii) We have A∪B=∪, the universal set
To show : A⊂B
Let , x ϵ A
⇒x /ϵA′ [∵A∩A′=ϕ]
∵x ϵ A and A⊂∪
⇒x ϵ (A′∪B) [∴∪=A′∪B]
⇒x ϵ A′ or x ϵ B
But, x/ϵ A′,
∴ x ϵ B
Thus, x ϵ A⇒x ϵ B
This is true for all x ϵ A
∴A⊂B