Question

# For every positive integer $$n, \dfrac {n^7}{7}+\dfrac {n^5}{5}+\dfrac {2n^3}{3}-\dfrac {n}{105}$$ is

A
an integer
B
a rational number
C
a negative real number
D
an odd integer

Solution

## The correct option is A an integer$$\dfrac { { n }^{ 7 } }{ 7 } +\dfrac { { n }^{ 5 } }{ 5 } +\dfrac { 2{ n }^{ 3 } }{ 3 } -\dfrac { n }{ 105 }$$ where $$n$$ is a positive integer.When $$n=1$$, we get,$$\dfrac { { n }^{ 7 } }{ 7 } +\dfrac { { n }^{ 5 } }{ 5 } +\dfrac { 2{ n }^{ 3 } }{ 3 } -\dfrac { n }{ 105 }$$ $$=\dfrac { 15{ n }^{ 7 }+21{ n }^{ 5 }+70{ n }^{ 3 }-n }{ 105 }$$$$=\dfrac { 15+21+70-1 }{ 105 } =\dfrac { 105 }{ 105 } =1$$ which is an integer.When $$n=2$$,we get;$$\dfrac { { n }^{ 7 } }{ 7 } +\dfrac { { n }^{ 5 } }{ 5 } +\dfrac { 2{ n }^{ 3 } }{ 3 } -\dfrac { n }{ 105 }$$ $$=\dfrac { 15{ n }^{ 7 }+21{ n }^{ 5 }+70{ n }^{ 3 }-n }{ 105 }$$$$=\dfrac { \left( 15\times 128 \right) +\left( 21\times 32 \right) +\left( 70\times 28 \right) -2 }{ 105 }$$$$=\dfrac { 1920+672+560-2 }{ 105 }$$$$=\dfrac { 3105 }{ 105 } =30$$ which is an even positive integer.Mathematics

Suggest Corrections

0

Similar questions
View More

People also searched for
View More