The correct options are
A (0,1) lies on the circle
B (3,1) lies outside the circle
C (1,3) lies inside the circle
D (1,1) lies inside the circle
Let S=x2+y2−2x−4y+3=0
(a) At point (0,1)
S1≡0+1−0−4+3=0, lies on the circle
(b) AT point (3,1)
S1≡9+1−6−4+3=3>0, lies outside the circle
(c) At point (1,3)
S1≡1+9−2−12+3=−1<0, lies inside the circle
(d) At point (1,1)
S1≡1+1−2−4+3=−1<0, lies inside the circle