For the equation 3x2+px+3=0,p>0, if one of the roots is the square of the other, then find the value of p.
3
Given the quadratic equation:
3x2+px+3=0,p>0,
Now, let α be one of the roots.
⇒α+α2=−p3⋯(i)& α⋅α2=33=1⇒α3=1⋯(ii)
Now, α3=1
⇒(α−1)(α2+α+1)=0⇒(α−1)=0 or (α2+α+1)=0
Now, let α=1
⇒1+1=−p3⇒p=−6
Which is rejected as p>0
Now, let (α2+α+1)=0⇒α+α2=−1
⇒α+α2=−p3⇒−1=−p3⇒p=3