For the following question verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.
y=xsin3x:d2ydx2+9y−6cos3x=0.
Given, y=xsin3x ....(i)
On differentiating bothe sides w.r.t. x, we get
dydx=xddx(sin3x)+sin3xddx(x) (using product rule of differentiation)
dydx=xcos3x×3+sin3x
Again, differentiating bothe sides w.r.t. x, we get
d2ydx2=3[xddxcos3x+cos3xddxx]+ddx(sin3x)⇒d2ydx2=3[x (−sin3x×3)+cos3x]+cos3x ×3⇒d2ydx2==9x sin3x+3cos3x+3cos3x⇒d2ydx2=−9x sin3x+6cos3x⇒d2ydx2=−9y+6cos3x (Using Eq.(i), y=xsin3x)⇒d2ydx2+9y−6cos3x=0
Hence, the given function is a solution of the corresponding differential equation.