The correct option is C [1/2001/2]
Given, |z1|=|z2|=1
z1 and z2, [¯¯¯¯¯z1−z2¯¯¯¯¯z2z1]−1[z1z2−¯¯¯¯¯z2¯¯¯¯¯z1]−1
Let A=[¯¯¯¯¯z1−z2¯¯¯¯¯z2z1],B=[z1z2−¯¯¯¯¯z2¯¯¯¯¯z1]
Here, |A|=z1¯z1+z2¯z2=|z1|2+|z2|2=2
|B|=z1¯z1+z2¯z2=|z1|2+|z2|2=2
Hence, A−1,B−1 exists
Now, adjA=CT=[z1−¯¯¯¯¯z2z2¯¯¯¯¯z1]T
adjA=[z1z2−¯¯¯¯¯z2¯¯¯¯¯z1]
Hence, A−1=12[z1z2−¯¯¯¯¯z2¯¯¯¯¯z1]
Now, adjB=[¯¯¯¯¯z1¯¯¯¯¯z2z2z1]T
adjB=[¯¯¯¯¯z1z2¯¯¯¯¯z2z1]
Hence,B−1=12[¯¯¯¯¯z1z2¯¯¯¯¯z2z1]
Now, A−1B−1=14[z1z2−¯¯¯¯¯z2¯¯¯¯¯z1][¯¯¯¯¯z1z2¯¯¯¯¯z2z1]
=14[|z1|2+|z2|200|z1|2+|z2|2]
=[120012]