For x∈R−{0,1}, let f1(x)=1x, f2(x)=1−x and f3(x)=11−x be three given functions. If a function, J(x) satisfies (f2∘J∘f1)(x)=f3(x) then J(x) is equal to :
A
f1(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f2(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f3(x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1x⋅f3(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cf3(x) Given : f1(x)=1x, f2(x)=1−x and f3(x)=11−x (f2∘J∘f1)(x)=f3(x).........(1)
Substituting the values of f1(x) and f3(x) in equation (1), we will get (f2∘J)(1x)=11−x∴(f2(J(1x))=11−x
Substituting J(1x) in the function f2(x) we will get, 1−J(1x)=11−x ⇒1−11−x=J(1x) ⇒1−1x1x−1=J(1x)