The correct option is A 0.16
Given Fourier transform of a periodic signal as,
X(jω)=jδ(ω−π3)+2δ(ω−π7)
δ(t)F.T⇌1
1⇌2πδ(ω)
According to frequency shifting property,
ejω0tx(t)⇌X(ω−ω0)
ej(x3)t⇌2πδ(ω−π3)
jej(π3)t⇌j2πδ(ω−π3)
Similarly, 2ej(π7)t⇌4πδ(ω−π7)
x(t)⇌X(jω)
x(t)=j2πef(π3)t+1πef(π7)t
Fundamental angular frequency,
ω0=GCD{π3,π7}=π21rad/s
x(t) can be represented as,
x(t)=∑∞k=−∞Cnejπω0t
By comparing (i) and (ii)
x(t)=j2πej7ω0t+1πejsω0t
So, Fourier series coefficient are,
C3=1π, C7=j2π=j0.16