1(x−1)(x+2)(2+3)=Ax−1+Bx+2+C2x+3
⇒A(x + 2)(2x + 3) + B(x − 1)(2x + 3) + C(x − 1)(x + 2)(x − 1)(x + 2)(2x + 3)=1(x−1)(x+2)(2x+3)
or
A(2x2 + 3x + 2x + 6) + B(2x2 + 3x − 2x − 3) + C(x2 + 2x − x − 2(x − 1)(x + 2)(2x + 3)=1(x−1)(x+2)(2x+3)
or
x2(2A + 2B + C) + x(5A + B + C) + 6A − 3B − 2C(x−1)(x+2)(2x+3)=1(x−1)(x+2)(2x+3)
Now we'll compare the expression we got with the given expression. That is, comparing the numerator of the above expression with numerator of 1(x − 1)(x + 2)(2x + 3)
So, 2A + 2B + C = 0 (coefficient of x2 = 0)
5A + B + C = 0 (coefficient of x = 0)
6A - 3B - 2C = 1
We have three equations and three variables. On solving these equations we get A = 113, B = 313, C = −813