d2xdy2 equals:
−(d2ydx2)−1(dydx)−3
(d2ydx2)(dydx)−2
−(d2ydx2)(dydx)−3
(d2ydx2)−1
d2xdy2=ddy(dxdy)=ddx(dxdy)dxdy =ddx(1dydx)dxdy=−1(dydx)2.d2ydx2.1dydx=−1(dydx)3d2ydx2
Which of the following differential equations has y=x as one of its particular solution? (a) d2ydx2−x2dydx+xy=x (b) d2ydx2+xdydx+xy=x (c) d2ydx2−x2dydx+xy=0 (d) d2ydx2+xdydx+xy=0