tanθ1-cotθ+cotθ1-tanθ=1+tanθ+cotθ.
Verify L.H.S and R.H.S.
Here, L.H.S.=R.H.S.
Let L.H.S.=tanθ1-cotθ+cotθ1-tanθ
=tanθ1-1tanθ+1tanθ1-tanθ=tan2θtanθ-1+1tanθ(1-tanθ)
Step-2
Now L.C.M.method
=tan3θ-1tanθ(tanθ-1)
We obey a3-b3=(a-b)(a2+ab-b2)
=(tanθ-1)(tanθ2+tanθ+1)tanθ(tanθ-1)
=tanθ+1+cotθ=R.H.S.
Hence, L.H.S.=R.H.S.
Let B = {1 orange, 1 pineapple, 1 banana, 1 apple} Let U = {1 orange, 1 apricot, 1 pineapple, 1 banana, 1 mango, 1 apple, 1 kiwifruit}
B’ =