(tan3θ−1tan3θ+1)=(√31)usecomponendoanddividendo,weget(tan3θ−1+tan3θ+1tan3θ−1−tan3θ−1)=(√3+1√3−1)ortan3θ=(√3+11−√3)ortan3θ=(tan(π3)+tanπ41−tan(π3)(π4))∴3θ=(π3)+(π4)∴θ=(nπ3)+(7π36)
Solve the equation: √(116+cos4x−12cos2x)+√(916+cos4x−32cos2x)=12