The correct option is C −1
g(x+y)=g(x)+g(y)+3x2y+3xy2 (1)
or g′(x+y)=g′(x)+6yx+3y2 (differentiating w.r.t. x keeping y as constant)
Put x=0. Then,
or g′(y)=g′(0)+3y2
=−4+3y2
or g′(y)=−4+3y2
or g(x)=−4x+x3+c
Now, put x=y=0 in (1). Then g(0)=g(0)+g(0)+0
or g(0)=0
or g(x)=x3−4x
g(x)=0⟹x3−4x=0⟹x=0,2,−2.
Hence, three roots,
√g(x)=√x3−4x is defined if x3−4x≥0 or xϵ[−2,0]∪[2,∞].
Also, g′(x)=3x2−4⟹g′(1)=−1.