wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given an=4,d=2,Sn=14, then find the n and an.

Open in App
Solution

Given. an=4
d=2
sn=14.

Now, an=4
a1+(n1)d=4 where a1 The first term
a1+(n1)2=4
a1+2(n1)=4 ......(1)

and sn=14
n2{2a1+(n1)d}=14.
n2{2a1+2(n1)}=14.
na1+n(n1)=14
n(a1+(n1))=14.
(42(n1)+(n1))=14
(42(n1))=14 [from (1)]
n(4(n1))=14
4nn(n1)=14
4nn2+n=14
n25n14=0
n27n+2n14=0
n(n7)+2(n7)=0
(n+2)(n7)=0
n=2 or n=7.

here n=-2 is rejected since n is not negative.
n=7.
from(1),a1+2(n1)=4
a1+2(71)=4
a1+2.6=4
a1=412.
a1=8.

Hence an=a1+(n1)d
=8+(71)2
=8+6.2
=8+12.
=4

1202276_1321935_ans_78a24097cb014fa595d9b42bad8015cb.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon