Given a1=12(a0+Aa0),
a2=12(a1+Aa1)andan+1=12(an+Aan) for n ≥ 2, where a > 0, A > 0. Prove that an−√Aan+√A=(a1−√Aa1+√A)2n−1
Given that ai > 0 and i belongs to a set of natural numbers. If a1,a2,a3.....a2n are in AP, then find the value of a1+a2n√a1+√a2+a2+a2n−1√a2+√a3............+an+an+1√an+√an+1