wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given a1=12a0+Aa0, a2=12a1+Aa1 and an+1=12an+Aan for n2, where a>0, A>0.Prove that an-Aan+A=a1-Aa1+A2n-1.

Open in App
Solution

Given: a1=12a0+Aa0, a2=12a1+Aa1 and an+1=12an+Aan for n2, where a>0, A>0.To prove: an-Aan+A=a1-Aa1+A2n-1Proof:Let pn: an-Aan+A=a1-Aa1+A2n-1Step I: For n=1,LHS=a1-Aa1+ARHS=a1-Aa1+A21-1=a1-Aa1+AAs, LHS=RHSSo, it is true for n=1.Step II: For n=k,Let pk: ak-Aak+A=a1-Aa1+A2k-1 be true for some values of k2.Step III: For n=k+1,pk+1:LHS=ak+1-Aak+1+A=12ak+Aak-A12ak+Aak+A=12ak2+A-2akAak12ak2+A+2akAak=ak2+A-2akAak2+A+2akA=ak-A2ak+A2=ak-Aak+A2=a1-Aa1+A2k-12 Using step II=a1-Aa1+A2k-1×2=a1-Aa1+A2k-1+1=a1-Aa1+A2kRHS=a1-Aa1+A2k+1-1=a1-Aa1+A2kAs, LHS=RHSSo, it is also true for n=k+1.Hence, an-Aan+A=a1-Aa1+A2n-1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fear of the Dark
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon