1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Principal Solution of Trigonometric Equation
given θ=1Fi...
Question
given
cot
θ
=
1
Find
(
1
+
sin
θ
)
(
1
−
sin
θ
)
(
1
+
cos
θ
)
(
1
−
cos
θ
)
Open in App
Solution
We have
cot
θ
=
1
(
1
+
sin
θ
)
(
1
−
sin
θ
)
(
1
+
cos
θ
)
(
1
−
cos
θ
)
⇒
(
1
)
2
−
(
sin
θ
)
2
(
1
)
2
−
(
cos
θ
)
2
[
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
]
⇒
1
−
sin
2
θ
1
−
cos
2
θ
⇒
cos
2
θ
sin
2
θ
⇒
c
o
t
2
θ
⇒
(
1
)
2
⇒
1
Suggest Corrections
0
Similar questions
Q.
Prove the following trigonometric identities.
(i)
sec
θ
-
1
sec
θ
+
1
+
sec
θ
+
1
sec
θ
-
1
=
2
cosec
θ
(ii)
1
+
sin
θ
1
-
sin
θ
+
1
-
sin
θ
1
+
sin
θ
=
2
sec
θ
(iii)
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
(iv)
sec
θ
-
1
sec
θ
+
1
=
sin
θ
1
+
cos
θ
2
(v)
sin
θ
+
1
-
cos
θ
cos
θ
-
1
+
sin
θ
=
1
+
sin
θ
cos
θ