The correct option is C (7,19,25)
b+c11=c+a12=a+b13=λ
∴ b+c=11λ ⋯(1)c+a=12λ ⋯(2)a+b=13λ ⋯(3)
⇒a+b+c=18λ ⋯(4)
Now subtract (1) from (4), we get
a=7λ⇒b=6λ,c=5λ
By cosine rule,
cosA=36λ2+25λ2−49λ22×6λ×5λ=15
cosB=25λ2+49λ2−36λ22×5λ×7λ=1935
cosC=49λ2+36λ2−25λ22×7λ×6λ=57
∵cosAα=cosBβ=cosCγ
⇒15α=1935β=57γ=k∴α=15k=735k,β=1935k,
and γ=57k=2535k
So, (α,β,γ):(7,19,25)