wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given log2a=p,log4b=p2 and logc2(8)=2p3+1. If log2(c8ab2)=(αp3βp2γp+δ) where α,beta,γ,δ,N, then find the value of (α+β+γ+δ).

Open in App
Solution

log2a=p ......... (i)
log4b=p2
log2blog24=p2log2b2log22=p2
log2b=2p2 ......... (ii)
logc28=2p3+1
log28log2c2=2p3+1
log282log2c=2p3+1
log28log2c=4p3+1
log2clog28=p3+14
log8c=p3+14
log2clog28=p3+14log2c3log22=p3+14
log2c=3p3+34 ......... (iii)
log2(c8ab2)=αp3βp2γp+δ
log2c8log2ab2=αp3βp2γp+δ
8log2clog2a2log2b=αp3βp2γp+δ
6p3+6p4p2=αp3βp2γp+δ
By comparing the coefficients, we get
α=6,β=4,γ=1,δ=6
α+β+γ+δ=17

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon