We have: (1+cosα)(1+cosβ)(1+cosγ)
(1−cosα)(1−cosβ)(1−cosγ)
Multiplying both sides by
(1+cosα)(1+cosβ)(1+cosγ), we get
(1+cosα)2(1+cosβ)2(1+cosγ)2
(1−cosα)(1−cosβ)(1−cosγ)(1+cosα)(1+cosβ)(1+cosγ)
⇒(1+cosα)2(1+cosβ)2(1+cosγ)2
=(1−cos2α)(1−cos2β)(1−cos2γ)
⇒(1+cosα)2(1+cosβ)2(1+cosγ)2=sin2αsin2βsin2γ
⇒(1+cosα)(1+cosβ)(1+cosγ)=±sinαsinβsinγ
Hence, one of the values of (1+cosα)(1+cosβ)(1+cosγ) is sinαsinβsinγ