wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given that iz2 =1+2z+3z2+4z3+5z4+.... and z=n±i, find 100n

Open in App
Solution

iz2=1+2z+3z2+4z3+.... ....(1)
also
iz=12+2z2+3z3+4z4.... ....(2)
(1) - (2)
iz(z1)=1+1z+1z2+3z3....
iz(z1)=111z
iz(z1)=zz1
z[izi1z1]=0
zz1[iz2iziz+i1]=0
zz1[iz22iz+i1]=0
z=0(notpossible) or z=2i±44i(i1)2i
=1±22i1+1
=1±i
so n= (comparing with n±i)
[100n]=100

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon