The correct option is C x
(1+√1+x)tany=1+√1−x ...(1)
Squaring equation (1), we get
(x+2+2√1+x)tan2y=−x+2+2√1−x⇒x(1+tan2y)=−2(1+√1+x)tan2y+2(1+√1−x)
⇒x(1+tan2y)=−2(1+√1+x)tan2y+2(1+√1+x)tany ...{ from 1}
⇒x(1+tan2y)2tany=(1+√1+x)(1−tany)
⇒xsin2y=(1+√1+x)(1−1+√1−x1+√1+x) ...{ from 1}
⇒sin2y=x√1+x−√1−x=√1+x+√1−x2⇒sin22y=14(1+x+1−x+2√1−x2)⇒1+cos4y2=1+√1−x22⇒cos4y=√1−x2⇒sin4y=x
Ans: C