wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given that sinθ+2cosθ=1, then prove that 2sinθ-cosθ=2.


Open in App
Solution

Show that 2sinθ-cosθ=2

Squaring both the sides

(sinθ+2cosθ)2=12sin2θ+4cos2θ+4sinθcosθ=1(1-cos2θ)+4(1-sin2θ)+4sinθcosθ=1[sin2θ+cos2θ=1]4sin2θ+cos2θ-4sinθcosθ=4[a2+b2+2ab=(a-b)2](2sinθ-cosθ)2=42sinθ-cosθ=2

Hence Proved 2sinθ-cosθ=2.


flag
Suggest Corrections
thumbs-up
122
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon