Given that sinθ+2cosθ=1, then prove that 2sinθ-cosθ=2.
Show that 2sinθ-cosθ=2
Squaring both the sides
(sinθ+2cosθ)2=12⇒sin2θ+4cos2θ+4sinθcosθ=1⇒(1-cos2θ)+4(1-sin2θ)+4sinθcosθ=1[sin2θ+cos2θ=1]⇒4sin2θ+cos2θ-4sinθcosθ=4[a2+b2+2ab=(a-b)2]⇒(2sinθ-cosθ)2=4⇒2sinθ-cosθ=2
Hence Proved 2sinθ-cosθ=2.