We are given
z1+z2+z3=A
z1+z2ω+z3ω2=B
z1+z2ω2+z3ω=C
We have
|A|2+|B|2+|C|2=A¯A+B¯B+C¯C .....(1)
But A¯A=(z1+z2+z3)(¯z1+¯z2+¯z3)
=z1¯z1+z2¯z2+z3¯z3+¯z1(z2+z3)+¯z2(z3+z1)+¯z3(z1+z2) ....
|z1|2+|z2|2+|z3|2+¯z1(z2+z3)+¯z2(z3+z1)+¯z3(z1+z2)
B¯B=(z1+z2ω+z3ω3)(¯z1+¯z2ω+¯z3ω2)
=(z1+z2ω+z3ω3)(¯z1+¯z2ω2+¯z3ω)
[∵¯ω=ω2and(ω)2=ω]
=z1¯z1+z2¯z2ω3+z3¯z3ω.3+¯z1(z2ω+z3ω2)+¯z2(z3ω4+z1ω2)+¯z3(z1ω+z2ω2)
=|z1|2+|z2|2+|z3|2+¯z1(z2ω+z3ω2)+¯z2(z3ω+z1ω2)+¯z3(z1ω+z2ω2)
Similarly ,
C¯C=|z1|2+|z2|2+|z3|2+¯z1(z2ω2+z3ω)+¯z2(z3ω2+z1ω)+¯z3(z1ω2+z2ω) ....(3)
Adding (1) , (2) and (3) , we get
A¯A+B¯B+C¯C=3[|z1|2+|z2|2+|z3|2]+¯z1[z2(1+ω+ω2)+z3(1+ω2+ω)]+¯z2[z3(1+ω+ω2)+z1(1+ω2+ω)]+¯z3[z1(1+ω+ω2)+z2(1+ω2+ω)]
=3[|z1|2+|z2|2+|z3|2]
[∵1+ω+ω2=0]
∴ from (1) and (2) , we conclude
|A|2+|B|2+|C|2=3(|z1|2+|z2|2+|z3|2)