Greatest value of sin2θ+cos2θ+4 is
Let f(x)=sin2θ+cos2θ+4
=sin2θ+cos2θ+12+4[∵cos2θ=2cos2θ−1]
f(x)=2sin2θ+cos2θ2+92
as we know, range of asinx±bcosx is [−√a1+b2,√a2+b2]
∴g(θ)=2sin2θ+cos2θ
range of g(x)ϵ[−√22+1,√22+1]
ϵ[−√5,√5]
∴ range of f(x)ϵ[9−√52,9+√52]