wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

How do you solve cos2x=-32 using the double angle identity?


Open in App
Solution

Step- 1: Express -32 in terms of cosine of some angle:

-32=-cos30°substitutedusingknownvaluecos30°=32=cos180°-30°Appliedtheidentitycos180°-x=-cosx=cos150°

Thus, -32=cos150°. So, the given equation can be written as cos2x=cos150°.

Step- 2: Simplify the equation after using the double angle identity for cosine:

cos2x=cos150°2cosx2-1=2cos75°2-1Appliedthedoubleangleidentitycos2x=2cosx2-12cosx2=2cos75°2cosx2=cos75°2cosx2-cos75°2=0cosx-cos75°cosx+cos75°=0Appliedtheidentitya2-b2=a+ba-bcosx=±cos75°

Thus, cosx=±cos75°.

Step- 3: Solve for x using cosx=±cos75°:

Recall that if cosx=cosy then x=n×360°±y, where n is any integer.

Sincecosx=cos75°, we get x=n×360°±75°.

Also, cosx=-cos75°, thus

cosx=-cos75°=cos180°-75°Appliedcos180°-x=-cosx=cos105°.

Since cosx=cos105°, we get x=n×360°±105°.

Hence, x=n×360°±75° and x=n×360°±105° together, form the general solution of the given equation cos(2x)=-32. Here n is an integer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon