Given: G.P. 3,32,34,... and Sn=3069512
Here, first term a=3
common ratio =r=323=12
We know that, sum of n terms of G.P. is given by
Sn=a(1−rn)1−r
3069512=3[1−(12)n]1−12
⇒3069512×6=[1−(12)n]
⇒(12)n=(1−30693072)
⇒(12)n=(3072−30693072)
⇒(12)n=(33072)
⇒(12)n=(11024)
⇒(12)n=(12)10
On comparing of powers, we get
n=10
Hence, 10 terms are needed to give the sum 3069512.