wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) 1+cosθ+sinθ1+cosθ-sinθ=1+sinθcosθ
(ii) sinθ+1-cosθcosθ-1+sinθ=1+sinθcosθ

Open in App
Solution

(i) LHS=1+cosθ+sinθ1+cosθsinθ ={(1+cosθ)+sinθ}{(1+cosθ)+sinθ}{(1+cosθ)sinθ}{(1+cosθ)+sinθ} {Multiplying the numerator and denominator by (1+cosθ+sinθ)} ={(1+cosθ)+sinθ}2{(1+cosθ)2sin2θ} =1+cos2θ+2cosθ+sin2θ+2sinθ(1+cosθ)1+cos2θ+2cosθsin2θ =2+2cosθ+2sinθ(1+cosθ)1+cos2θ+2cosθ(1cos2θ) =2(1+cosθ)+2sinθ(1+cosθ)2cos2θ+2cosθ =2(1+cosθ)(1+sinθ)2cosθ(1+cosθ) =1+sinθcosθ =RHS(ii)LHS=sinθ+1cosθcosθ1+sinθ =(sinθ+1cosθ)(sinθ+cosθ+1)(cosθ1+sinθ)(sinθ+cosθ+1) {Multiplying and dividing by 1+cosθ+sinθ } =(sinθ+1)2cos2θ(sinθ+cosθ)212 =sin2θ+1+2sinθcos2θsin2θ+cos2θ+2sinθcosθ1 =sin2θ+sin2θ+cos2θ+2sinθcos2θ2sinθcosθ =2sin2θ+2sinθ2sinθcosθ =2sinθ(1+sinθ)2sinθcosθ =1+sinθcosθ =RHS

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon