1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Relation between Trigonometric Ratios
i 1+cosθ+sinθ...
Question
(i)
1
+
cosθ
+
sinθ
1
+
cosθ
-
sinθ
=
1
+
sinθ
cosθ
(ii)
sinθ
+
1
-
cosθ
cosθ
-
1
+
sinθ
=
1
+
sinθ
cosθ
Open in App
Solution
(
i
)
LHS=
1
+
cos
θ
+sin
θ
1
+
cos
θ
−
sin
θ
=
{
(
1
+
cos
θ
)
+
sin
θ
}
{
(
1
+
cos
θ
)
+
sin
θ
}
{
(
1
+
cos
θ
)
−
sin
θ
}
{
(
1
+
cos
θ
)
+
sin
θ
}
{Multiplying the numerator and denominator by (
1
+
cos
θ
+
sinθ)}
=
{
(
1
+
cos
θ
)
+
sin
θ
}
2
{
(
1
+
cos
θ
)
2
−
sin
2
θ
}
=
1
+
cos
2
θ
+
2
cos
θ
+sin
2
θ
+
2
sin
θ
(
1
+
cos
θ
)
1
+
cos
2
θ
+
2
cos
θ
−
sin
2
θ
=
2
+
2
cos
θ
+
2
sin
θ
(
1
+
cos
θ
)
1
+
cos
2
θ
+
2
cos
θ
−
(
1
−
cos
2
θ
)
=
2
(
1
+
cos
θ
)
+
2
sin
θ
(
1
+
cos
θ
)
2
cos
2
θ
+
2
cos
θ
=
2
(
1
+
cos
θ
)
(
1
+
sin
θ
)
2
cos
θ
(
1
+
cos
θ
)
=
1
+
sin
θ
cos
θ
=RHS
(
ii
)
LHS=
sin
θ
+1
−
cos
θ
cos
θ
−
1
+
sin
θ
=
(
sin
θ
+1
−
cos
θ
)
(
sin
θ
+cos
θ
+1
)
(
cos
θ
−
1
+
sin
θ
)
(
sin
θ
+cos
θ
+1
)
{
Multiplying
and
dividing
by
1
+
cos
θ
+
sinθ }
=
(
sin
θ
+
1
)
2
−
cos
2
θ
(
sin
θ
+cos
θ
)
2
−
1
2
=
sin
2
θ
+
1
+
2
sin
θ
−
cos
2
θ
sin
2
θ
+
cos
2
θ
+
2
sin
θ
cos
θ
−
1
=
sin
2
θ
+
sin
2
θ
+
cos
2
θ
+
2
sin
θ
−
cos
2
θ
2
sin
θ
cos
θ
=
2
sin
2
θ
+
2
sin
θ
2
sin
θ
cos
θ
=
2
sin
θ
(
1
+
sin
θ
)
2sin
θ
cos
θ
=
1+sin
θ
cos
θ
=RHS
Suggest Corrections
1
Similar questions
Q.
Prove the following trigonometric identities.
(i)
sec
θ
-
1
sec
θ
+
1
+
sec
θ
+
1
sec
θ
-
1
=
2
cosec
θ
(ii)
1
+
sin
θ
1
-
sin
θ
+
1
-
sin
θ
1
+
sin
θ
=
2
sec
θ
(iii)
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
(iv)
sec
θ
-
1
sec
θ
+
1
=
sin
θ
1
+
cos
θ
2
(v)
sin
θ
+
1
-
cos
θ
cos
θ
-
1
+
sin
θ
=
1
+
sin
θ
cos
θ