wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) 1-sinθ1+sinθ=(secθ-tanθ)2
(ii) 1+cosθ1-cosθ=(cosecθ+cotθ)2

Open in App
Solution

(i) LHS=1sinθ1+sinθ =(1sinθ)(1sinθ)(1+sinθ)(1sinθ) [Dividing the numerator and denominator by (1sinθ)] =(1sinθ)2(1sin2θ) =1+sin2θ2sinθcos2θ =1cos2θ+sin2θcos2θ2sinθcos2θ =sec2θ+tan2θ2×1cosθ×sinθcosθ =sec2θ+tan2θ2secθtanθ =(secθ-tanθ)2 =RHS Hence, LHS= RHS(ii) LHS=1+cosθ1cosθ =(1+cosθ)(1+cosθ)(1cosθ)(1+cosθ) [Dividing the numerator and denominator by (1+cosθ)] =(1+cosθ)2(1cos2θ) =1+cos2θ+2cosθsin2θ =1sin2θ+cos2θsin2θ+2cosθsin2θ =cosec2θ+cot2θ+21sinθ×cosθsinθ =cosec2θ+cot2θ+2cosec2θcot2θ =(cosecθ+cotθ)2 =RHS Hence, LHS = RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon