1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Range of Trigonometric Ratios from 0 to 90 Degrees
i 1-sinθ 1+si...
Question
(i)
1
-
sinθ
1
+
sinθ
=
(
secθ
-
tanθ
)
2
(ii)
1
+
cosθ
1
-
cosθ
=
(
cosecθ
+
cotθ
)
2
Open in App
Solution
(
i
)
LHS=
1
−
sin
θ
1+sin
θ
=
(
1
−
sin
θ
)
(
1
−
sin
θ
)
(
1+sin
θ
)
(
1
−
sin
θ
)
[
Dividing the numerator and
denominator by
(
1
−
sin
θ
)
]
=
(
1
−
sin
θ
)
2
(
1
−
sin
2
θ
)
=
1
+
sin
2
θ
−
2
sin
θ
cos
2
θ
=
1
cos
2
θ
+
sin
2
θ
cos
2
θ
−
2
sin
θ
cos
2
θ
=sec
2
θ
+
tan
2
θ
−
2
×
1
cos
θ
×
sin
θ
cos
θ
=sec
2
θ
+
tan
2
θ
−
2
sec
θ
tan
θ
=
(
sec
θ
-
tan
θ
)
2
=RHS
Hence
,
LHS
=
RHS
(
ii
)
LHS=
1
+
cos
θ
1
−
cos
θ
=
(
1
+
cos
θ
)
(
1
+
cos
θ
)
(
1
−
cos
θ
)
(
1
+
cos
θ
)
[
Dividing the numerator and
denominator by
(
1
+
cos
θ
)
]
=
(
1
+
cos
θ
)
2
(
1
−
cos
2
θ
)
=
1
+
cos
2
θ
+
2
cos
θ
sin
2
θ
=
1
sin
2
θ
+
cos
2
θ
sin
2
θ
+
2
cos
θ
sin
2
θ
=cosec
2
θ
+
cot
2
θ
+
2
1
sin
θ
×
cos
θ
sin
θ
=cosec
2
θ
+
cot
2
θ
+
2
cosec
2
θ
cot
2
θ
=
(
cosec
θ
+
cot
θ
)
2
=RHS
Hence
,
LHS
=
RHS
Suggest Corrections
0
Similar questions
Q.
Prove each of the following identities:
i
1
+
sin
θ
1
-
sin
θ
=
sec
θ
+
tan
θ
ii
1
-
cos
θ
1
+
cos
θ
=
cosec
θ
-
cot
θ
iii
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
Q.
Prove the following trigonometric identities.
(i)
sec
θ
-
1
sec
θ
+
1
+
sec
θ
+
1
sec
θ
-
1
=
2
cosec
θ
(ii)
1
+
sin
θ
1
-
sin
θ
+
1
-
sin
θ
1
+
sin
θ
=
2
sec
θ
(iii)
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
(iv)
sec
θ
-
1
sec
θ
+
1
=
sin
θ
1
+
cos
θ
2
(v)
sin
θ
+
1
-
cos
θ
cos
θ
-
1
+
sin
θ
=
1
+
sin
θ
cos
θ