i ddxf(x)=limh→0fx+h-fxh =limh→02x+h-2xh =limh→02x-2x-2hhx(x+h) =limh→0-2hhx(x+h) =limh→0-2x(x+h) =-2x2 ii ddxf(x)=limh→0fx+h-fxh =limh→01x+h-1xh =limh→0x-x+hhxx+h×x+x+hx+x+h =limh→0x-x-hhxx+hx+x+h =limh→0-hhxx+hx+x+h =limh→0-1xx+hx+x+h =-1xxx+x =-1x× 2x =-12x32 =-12x-32 iii ddxf(x)=limh→0fx+h-fxh =limh→01(x+h)3-1x3h =limh→0x3-(x+h)3h(x+h)3x3 =limh→0x3-x3-3x2h-3xh2-h3h(x+h)3x3 =limh→0-3x2h-3xh2-h3h(x+h)3x3 =limh→0h-3x2-3xh-h2h(x+h)3x3 =limh→0-3x2-3xh-h2(x+h)3x3 =-3x2x6 =-3x4 =-3x-4 iv ddxf(x)=limh→0fx+h-fxh =limh→0(x+h)2+1x+h-x2+1xh =limh→0x2+2xh+h2+1x+h-x2+1xh =limh→0x3+2x2h+h2x+x-x3-x2h-x-hxh(x+h) =limh→0x2h+h2x-hx(x+h) =limh→0h(x2+hx-1)xh(x+h) =limh→0x2+hx-1x(x+h) =x2-1x2
v ddxf(x)=limh→0fx+h-fxh =limh→0(x+h)2-1x+h-x2-1xh =limh→0x2+2xh+h2-1x+h-x2-1xh =limh→0x3+2x2h+h2x-x-x3-x2h+x+hxh(x+h) =limh→0x2h+h2x+hx(x+h) =limh→0h(x2+hx+1)xh(x+h) =limh→0x2+hx+1x(x+h) =x2+1x2 vi ddxf(x)=limh→0fx+h-fxh =limh→0x+h+1x+h+2-x+1x+2h =limh→0x+h+1x+2-x+h+2x+1hx+h+2x+2 =limh→0x2+2x+hx+2h+x+2-x2-x-hx-h-2x-2hx+h+2x+2 =limh→0hhx+h+2x+2 =limh→01x+h+2x+2 =1x+0+2x+2 =1x+22 vii ddxf(x)=limh→0fx+h-fxh =limh→0x+h+23x+h+5-x+23x+5h =limh→0x+h+23x+3h+5-x+23x+5h =limh→0x+h+23x+5-3x+3h+5x+2h3x+3h+53x+5 =limh→03x2+3xh+6x+5x+5h+10-3x2-3xh-5x-6x-6h-10h3x+3h+53x+5 =limh→0-hh3x+3h+53x+5 =limh→0-13x+3h+53x+5 =-13x+52 viii ddxf(x)=limh→0fx+h-fxh =limh→0 k x+hn-kxnh =limx+h-x→0 k x+hn-xnx+h-xHere, we have: limx→axm-amx-a=m am-1 =k n xn-1 ix ddxf(x)=limh→0fx+h-fxh =limh→0 13-x-h-13-xh =limh→0 3-x-3-x-hh3-x3-x-h =limh→0 3-x-3-x-hh3-x3-x-h× 3-x+3-x-h3-x+3-x-h =limh→0 3-x-3+x+hh3-x3-x-h3-x+3-x-h =limh→0 hh3-x3-x-h3-x+3-x-h =limh→0 13-x3-x-h3-x+3-x-h =13-x3-x-03-x+3-x-0 =13-x 23-x =123-x32 x ddxf(x)=limh→0fx+h-fxh =limh→0 x+h2+x+h+3-x2+x+3h =limh→0x2+h2+2xh+x+h+3-x2-x-3h =limh→0h2+2xh+hh =limh→0 h(h+2x+1)h =limh→0 h+2x+1 =0+2x+1 =2x+1 xi ddxf(x)=limh→0fx+h-fxh =limh→0 x+h+23-x+23h =limh→0x+h+2-x-2x+h+22+x+h+2x+2+x+22h =limh→0hx+h+22+x+h+2x+2+x+22h =limh→0 x+h+22+x+h+2x+2+x+22 =x+0+22+x+0+2x+2+x+22 =x+22+x+22+x+22 =3x+22 xii ddxf(x)=limh→0fx+h-fxh =limh→0 x+h3+4x+h2+3x+h+2-x3+4x2+3x+2h =limh→0x3+3x2h+3xh2+h3+4x2+4h2+8xh+3x+3h+2-x3-4x2-3x-2h =limh→0 3x2h+3xh2+h3+4h2+8xh+3h+2h =limh→0 h3x2+3xh+h2+4h+8x+3h =limh→03x2+3xh+h2+4h+8x+3 =3x2+8x+3 xiii x2+1x-5=x3-5x2+x-5ddxf(x)=limh→0fx+h-fxh =limh→0 x+h3-5x+h2+x+h-5-x3-5x2+x-5h =limh→0 x3+3x2h+3xh2+h3-5x2-5h2-10xh+x+h-5-x3+5x2-x+5h =limh→0 3x2h+3xh2+h3-5h2-10xh+hh =limh→0 h 3x2+3xh+h2-5h-10x+1h =limh→0 3x2+3xh+h2-5h-10x+1 =3x2-10x+1 xiv ddxf(x)=limh→0fx+h-fxh =limh→0 2x+h2+1-2x2+1h =limh→02x2+2h2+4xh+1-2x2+1h =limh→02x2+2h2+4xh+1-2x2+1h×2x2+2h2+4xh+1+2x2+12x2+2h2+4xh+1+2x2+1 =limh→0 2x2+2h2+4xh+1-2x2-1h2x2+2h2+4xh+1+2x2+1 =limh→0 h2h+4xh2x2+2h2+4xh+1+2x2+1 =limh→0 2h+4x2x2+2h2+4xh+1+2x2+1 =4x2x2+1+2x2+1 =4x22x2+1 =2x2x2+1 xv ddxf(x)=limh→0fx+h-fxh =limh→0 2x+h+3x+h-2-2x+3x-2h =limh→0 2x+2h+3x-2-x+h-22x+3hx+h-2x-2 =limh→0 2x2+2xh+3x-4x-4h-6-2x2-2xh+4x-3x-3h+6hx+h-2x-2 =limh→0 -7hhx+h-2x-2 =limh→0 -7x+h-2x-2 =-7x-2x-2 =-7x-22
Differentiate each the following from first principles :
(i) 2x
(ii) 1√x
(iii) 1x3
(iv) x2+1x
(v) x2−1x
(vi) x+1x+2
(vii) x+23x+5
(viii) k xn
(ix) 1√3−x
(x) x2+x+3
(xi) (x+2)3
(xii) x3+4x2+3x+2
(xiii) (x2+1)(x−5)
(xiv) √2x2+1
(xv) 2x+3x−2