(i) Find the derivative of cosec x from the first principle.
(ii) Evaluate limx→√2x4−4x2+3√2x−8
(i) - cosec x cot x (ii) 85
(i) Evaluate limx→1x+x2+x3+...+xn−nx−1
(ii) Find the derivative \sqrt{sin x} from first principle.
(i) Find the derivative of √(x−1)(x−2)(x−3)(x−4) + sin x1+tan x
(ii) Evaluate limx→0(1+x)6−1(1+x)2−1
Evaluate the following one sided limits:
(i)limx→2+x−3x2−4
(ii)limx→2−x−3x2−4
(iii)limx→0+13x
(iv)limx→8+2xx+8
(v)limx→0+2x15
(vi)limx→π−2tan x
(vii)limx→π2+sec x
(viii)limx→0−x2−3x+2x3−2x2
(ix)limx→−2+x2−12x+4
(x)limx→0+(2−cot x)
(xi)limx→0−1+cosecx
(i) If f(x)={x−|x|xif x≠02if x=0, show that limx→ 0 f(x) does not exist.
(ii) Evaluate limx→ 0 sin x−2 xin 3x+sin 5xx.
Or
(i) Find the derivative of (x−1)(x−2)(x−3)(x−4).
(ii) Differentiate xex by using first principle.