I have 3 normal disc, one red, one blue and one green and I roll all three simultaneously. Let P be the porbability that the sum of the numbers on the red and blue dice is equal to the number on the green die. If P is the written in lowest terms as a/b then the value of (a+b) equals-
R B G
Total cases → 6×6×6=216
Favourable cases
(i) If green =2, B=1, R=1
(ii)G=3, ⇒B=1,R=2
B=2,R=1
(iii)G=4⇒B=1,R=3
B=2,R=2
B=3,R=1
(iv) G=5 → B=1,R=4
B=2,R=3
B=3,R=2
B=4,R=1
(v)G=6 ⇒ B=1,R=5
B=2,R=4
B=3,R=3
B=4,R=2
B=5,R=1
Total favourable cases =15
P=15216=572=ab
a+b=77.